

LA-UR-20-23577

Approved for public release; distribution is unlimited.

Using Deep Neural Networks to Extract Fireball Parameters from Title:

Infrared Spectral Data

Armstrong, Derek Elswick Gorka, Joseph Gabriel Author(s):

Virtual meeting / symposium. Intended for:

Issued: 2020-05-13

Using Deep Neural Networks to Extract Fireball Parameters from Infrared Spectral Data

ASME 2020 Virtual V&V Symposium VVS2020-8802

Derek E. Armstrong, XCP – 8 Verification and Analysis
Joseph G. Gorka, University of Wisconsin – Madison
May 22, 2020
NATIONAL LABORATORY

EST.1943 ————

Overview

- Use spectrometers to monitor high explosive (HE) events in infrared region:
 - -Spectrometers measure radiance in many (100s) of spectral bands.
 - -Sensors give information on the fireball such as temperature, size, soot quantity and gas species concentrations (CO, CO₂, H₂O, etc.).

Objective of Data Analysis

- Develop methods to extract fireball information from remotely sensed infrared data with hundreds of spectral bands.
 - Recent work looks at machine learning and deep neural networks.
- Validation of computational physics codes that simulate HE or similar events (equation-of-state (EOS), metal fragmentation, soot).

Models for gas species molar fractions in mixed HE/air zones

Spectrometer Resolution and FTIR

- Tradeoff between different resolutions (spatial vs temporal vs spectral):
 - Sensors often sacrifice one type of resolution to improve the other two.
- This presentation considers specific FTIR spectrometer:
 - FTIR (Fourier Transform Infrared): raw data is an interferogram.
 - Single pixel, ~16 cm⁻¹ spectral resolution, ~0.01s temporal resolution.

Fireball Radiance Model

At-sensor radiance model R(.) with gas and soot (no additional solid materials):

$$\begin{split} R(\nu) &= l^2 \varepsilon_{FB}(\nu) B(T_{FB}, \nu) \tau_{atm}(\nu) \\ &= l^2 \Big(1 - e^{-l\kappa_p - l\sum \xi_i \sigma_i(\nu)} \Big) B(T_{FB}, \nu) \tau_{atm}(\nu) \\ &= \text{area} \qquad \text{soot gases} \quad \text{Blackbody Atmospheric} \\ &\qquad \qquad \text{function} \quad \text{transmission} \end{split}$$

Fit parameters in red

 T_{FB} is fireball temperature l^2 is fireball area κ_p is soot absorption coefficient σ_i is gas cross sections ξ_i is gas concentrations in #/cm³

Goal is to find fireball parameters in model R(.) that best fit data.

Methods previously applied: Physics-based fitting, optimization, and Bayesian calibration.

Model for Fireball Radiance

At sensor radiance given by: $R(\nu) = l^2 \varepsilon_{FB}(\nu) B(T_{FB}, \nu) \tau_{atm}(\nu)$

Red curve is blackbody scaled by the fireball area.

Green curve is atmospheric transmission applied to blackbody.

Blue curve is FTIR.

Mismatch between green curve and data (**blue**) is due to fireball selective emission from fireball gas constituents.

Computational Challenges

Spectral model is computed at high resolution: 0.001 cm⁻¹

Then convolved with a sensor response or line-shape *L*

$$R(v) = l^{2} \varepsilon_{FB}(v) B(T_{FB}, v) \tau_{atm}(v) \qquad R_{s}(v_{i}) = \int_{0}^{\infty} L(v - v_{i}) R(v) dv$$

$$= l^{2} \left(1 - e^{-l\kappa_{p} - l\sum \xi_{i}\sigma_{i}(v)}\right) B(T_{FB}, v) \tau_{atm}(v)$$

T = 1195K,
$$l$$
 = 330cm,
soot (cm⁻¹) = 0.001,
XH2O (#/cm³) = 7.3E17,
XCO2 (#/cm³) = 1.7E18,
XCO (#/cm³) = 9.2E16.

Machine Learning

- Applying machine learning to artificially generated spectra:
 - Experimental data has no ground truth!
 - Analysis of artificial data to evaluate the accuracy of methods.
- Deep and shallow learning applied to problem:
 - Deep learning for full evaluation of regression accuracy.

Shallow learning with physics information and determination of important spectral bands.

Generation of Artificial Data Set

- Data with 388 spectral bands
 ~1900 to 5000 cm⁻¹
- "Easy" data set of ~400,000 artificial spectra:
 - Diameter kept constant at 3 meters.
 - Additive noise at ±0.5%;
 narrow line-shape.
 - 360,000 for training & testing;36,000 for validation
- "Hard" data set of ~400,000 artificial spectra:
 - All six parameters varied.
 - Additive noise at ±1%;
 wide sensor line-shape.

Parameter	Lower Bound	Upper Bound
T (K)	800	2200
diameter (m)	2	8
soot (cm ⁻¹)	1E-7	0.04
H2O (#/cm ³)	1E17	1E18
CO2 (#/cm ³)	1E17	2E18
CO (#/cm ³)	1E14	1E17

Data generated by sampling each parameter uniformly, except for soot.

Soot sampled such that the emissivity due to soot is uniform.

Deep Learning on Artificial Data

Tested NN with many layers, including convolutional layers.

Construction of Neural Network				
Layer	Output Shape	Parameter Count		
1D Convolution (Input)	(193, 16)	64		
1D Convolution	(96, 32)	1568		
1D Convolution	(47, 64)	6208		
1D Convolution	(23, 128)	24704		
1D Convolution	(23, 16)	2064		
Flatten	(None, 368)	0		
Dense	(None, 500)	184500		
Dense	(None, 250)	125250		
Dense	(None, 50)	12550		
Dense (Output)	(None, 5)	255		

Compared results to Physics-based method of Slagle (AFIT thesis, 2009).

Fireball area kept constant to make problem easier (T, area, and soot are highly correlated)

Networks with Single Hidden Layer

- What would the results be with a single hidden layer (HL)?
 - How many nodes/neurons are necessary for a good model?
 - Convolutional layers are counter-intuitive, especially for uncovering gases.

Fireball area kept constant.

S1 is RMSE/mean.

S2 is average relative error.

Validation statistics obtained from a set of 36000 artificial spectra.

Number of neurons for single HL varied from 128 to 2048 in a grid search.

Parameter	Deep NN S1	Single HL S1 / S2
Т	0.009	0.009 / 0.008
soot	0.093	0.070 / 0.091
H2O	0.087	0.114 / 0.097
CO2	0.094	0.110 / 0.111
CO	0.160	0.165 / 0.420

Results with Varying Fireball Size

- Temperature, fireball diameter, and soot quantity are highly correlated:
 - All three impact magnitude of fireball radiance.
 - Soot is a gray-body (emission is independent of wavenumber).
 - Hard to include all three as unknown in the data.

Data 1: fireball size kept constant.

Data 2: all parameters vary.

Validation statistics obtained from a set of 36000 artificial spectra.

For soot and gases, output labels y transformed by log(y).

Para- meter	"Easy" Data 1 S1 / S2	"Hard" Data 2 S1 / S2
Т	0.009 / 0.008	0.006 / 0.004
diameter	NA	0.012 / 0.009
soot	0.070 / 0.091	0.240 / 0.050
H2O	0.114 / 0.097	0.203 / 0.141
CO2	0.110 / 0.111	0.286 / 0.199
CO	0.165 / 0.420	0.522 / 0.656

Are Better Results Possible?

Why do the gases become harder to estimate?

- Radiance is a smooth function of temperature, size, and soot.
- Would think that estimators could discern gases from non-smooth structure across bands.

Tested compensating data for temperature and size:

- Build estimator for T and size.
- Apply to a data set, divide out impact of T and size, then fit to the other parameters.

$$\frac{R(v)}{l^2B(T_{FB},v)} = \varepsilon_{FB}(v)\tau_{atm}(v)$$

THIS DID NOT WORK! RESULTS WERE WORSE!

Are the Results Misleading?

If soot concentration is large enough, estimates for the gases are unreliable:

- Soot makes the fireball opaque: $R(v) = l^2 (1 e^{-lk_p l\sum \xi_i \sigma_i(v)}) B(T_{FB}, v) \tau_{atm}(v)$
- Should estimate emissivity of soot and if it's close to one,
 then it is likely that the gas estimates have high uncertainty.

Create a new label (output) equal to soot transmissivity $e^{-l\kappa_p}$:

Training single HL network on this output resulted in RMSE of **0.039** on a validation set.

Soot's Impact on T and Size

Results from a validation data set.

T ratio prediction vs actual

soot transmissivity

diameter ratio prediction vs actual

soot transmissivity

Soot's Impact on H2O & CO2

H2O ratio prediction vs actual

soot transmissivity

CO2 ratio prediction vs actual

soot transmissivity

Soot's Impact on CO

Conclusion

- Next Step (1): Examine outliers in prediction.
 - Why is it difficult to predict the fireball parameters for some spectra?
- Next Step (2): Reverse fitting to uncover most "important bands"
 - Train a network to predict spectral band given the six parameters.
 - Bands that can be accurately predicted are "important".
- Analyzing artificial fireball spectra:
 - Develop methods for recovering fireball parameters.
 - Validation and improvement of computational physics codes.

